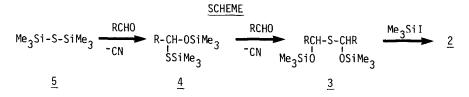

α, α' - DIIODOSULFIDES A USEFUL PREPARATION OF DIVINYLIC SULFIDES


T. Aida, T.H. Chan^{*} and David N. Harpp^{*} Department of Chemistry, McGill University Montreal, Quebec, Canada H3A 2K6

Symmetric and unsymmetric divinglic sulfides can be prepared almost quantitatively by the elimination of HI by base from the corresponding α, α' -diiodosulfide. These molecules are quantitatively formed in situ from $\alpha, \alpha' \underline{bis}$ trimethylsiloxysulfides and iodotrimethylsilane under mild conditions.

We have extended our earlier work¹ on the synthesis of vinylic sulfides to the construction of the divinylic analogs for which a general preparation method has not been established.² A variety of symmetric and unsymmetric divinylic sulfides (<u>1</u>) can be prepared almost quantitatively by the elimination of HI by base from α, α' -diiodosulfides (<u>2</u>)(eq.1). These are formed <u>in situ</u> by the reaction of α, α' -<u>bis</u>-trimethylsiloxysulfide (<u>3</u>) and iodotrimethylsilane (<u>4</u>) under mild conditions.

<u>Sym</u>- α , α' -<u>bis</u>-trimethylsiloxysulfides (3) can be prepared by using a modified procedure of

1090

Evans³ from an excess of aldehyde and hexamethyldisilthiane⁴(<u>5</u>) in the presence of a catalytic amount of potassium cyanide in 18-crown-6-ether (Scheme). In this case the early stage of the reaction always showed the presence of <u>3</u> and <u>4</u> suggesting comparable rates for each step. As expected, this method was not effective for the preparation of unsym- α, α' -<u>bis</u>-trimethyl-siloxysulfides(<u>3</u>). The problem was solved by preparing <u>4</u> from α -trimethylsiloxythiol (<u>6</u>)^{5,6} (eq.2). By this path a number of <u>sym</u> and <u>unsym- α, α' -bis</u>-trimethylsiloxysulfides (<u>3</u>) were synthesized (Table I).

The preparation of di(1-trimethylsiloxy) butylsulfide (<u>3a</u>) is illustrative. A mixture of one equivalent of hexamethyldisilthiane (<u>5</u>) and 4 equivalents of butanal is placed in a sealed tube with <u>ca</u>. 5×10^{-3} equivalents of solid potassium cyanide-18-crown-6-ether complex. After sealing under argon, it is heated at 40° for two days. The product is purified by column chromatography (silica gel: hexane/CH₂Cl₂) or preparative GC.

All of these compounds showed reasonable stability and can be stored at room temperature for 2-3 months without decomposition. They all appear to be a mixture of diastereomers of nearly equal proportion according to 1 H-nmr.

Treatment of <u>3</u> with iodotrimethylsilane below 20°C quantitatively gave α, α' -diiodosulfides (<u>2</u>). This was easily detected by H¹-nmr spectroscopy by following the chemical shift of the α -methine hydrogen as previously reported.¹ Efforts to isolate these α, α' -diiodosulfides (<u>2</u>) have not been successful. However, the addition of triethylamine to the solution expectedly gave the corresponding divinylic sulfides (<u>1</u>) in high yield.

A general preparation of $\underline{1}$ is given as follows. To a dry dichloromethane solution (5.0 mL) of $\alpha, \alpha' - \underline{bis}$ -trimethylsiloxysulfide ($\underline{3}$)(0.5 mol), iodotrimethylsilane (1.0 mol) is added dropwise at -78°C under a dry N₂ atmosphere. After 10 minutes stirring it is warmed to 0°C and stirred for an additional 10 minutes. To this solution, trimethylamine (1.1 mmol) is added dropwise at 0°C. The ice bath is removed and stirring is continued overnight. After solvent removal, the oily product is chromatographed by using silica gel with hexane as eluant. A number of divinylic sulfides $\underline{1}$ can be prepared by this method and are summarized in Table II. The identification of these compounds was established by H¹-nmr and mass spectrometry.

Acknowledgement

We thank the Natural Science and Engineering Research Council of Canada and the Ministry of Education, Government of Quebec, for financial support.

REFERENCES

- 1. T. Aida, D.N. Harpp, and T.H. Chan, Tetrahedron Lett., 3247(1980).
- W.L. Ruigh, and A.E. Erickson, J. Amer. Chem. Soc., 61, 915(1939); L. Brandsma, and J.F. Arens, <u>Rec. Trav. Chim.</u>, 81, 33(1962); T.J. Barton, and R.G.Z. Ka, J. Org. Chem., 35, 1729 (1970); M. Muelstaedt, P. Schneider, and D. Martinez, J. Prakt. Chem., 315, 929(1973); H. Nishimura, and J. Mizutani, <u>J. Org. Chem.</u>, 40, 1565(1975); B.A. Trofimov, S.V. Amosva, O.A. Tarasova, G.A. Kalabin, and V.M. Bzhezovskii, <u>Zh. org. Khim.</u>, 11, 1988(1974); S.V. Amosva, B.A. Trofimov, V.V. Kryuchkov and V.I. Parygina, Zh. org. Khim., 14, 48(1978).
- 3. D.A. Evans, L.K. Truesdale, K.G. Grimm, and S.L. Nesbitt, <u>J. Amer. Chem. Soc.</u>, <u>99</u>, 5009 (1977).
- 4. D.N. Harpp, and K. Steliou, Synthesis, 11, 721(1976).
- 5. T. Aida, T.H. Chan, and D.N. Harpp, submitted for publication.
- 6. A general procedure is given as follows. A dry ether solution of one equivalent of thiol, 1.5 equivalents of chlorotrimethylsilane and triethylamine is warmed at 40°C with stirring overnight under a dry nitrogen atmosphere. After collecting the triethylamine hydrochloride, the solvent is removed, and the residue distilled under reduced pressure.

	bp.(°C/mmHg)	H^1 -nmr(δ , TMS in CC1 ₄)
CH ₃ CH ₂ CH ₂ CH(OSiMe ₃)SSiMe ₃	53/0.8	4.94(t,J=6Hz,H), 2.0-0.7(m,7H) 0.32(s,9H,Me ₃ Si-S-), 0.15(s,9H,Me ₃ Si-O-)
(CH ₃) ₂ CHCH(OSiMe ₃)SSiMe ₃	48/0.9	4.80(d,J=5Hz,H), 2.1-1.4(m,H) 0.95(d,J=6Hz,6H), 0.30(s,9H,Me ₃ Si-S-) 0.13(s,9H,Me ₃ Si-O-)

	Preparation of α , α' -bis-Trimethylsiloxysulfides							
α,α	α'- <u>bis</u> -trimethylsiloxy sulfide <u>3</u> ^a	yield(%) ^b	H^1 -nmr(δ , TMS in CDC1 ₃)					
a	* Z Z CH ₃ CH ₂ CH ₂ CH-S-CHCH ₂ CH ₂ CH ₃ Z Z	78	5.10 and 5.02(each t,J=5Hz,2H) 2.1-0.7(m,14H), 0.18(s,18H)					
b	777 (сн ₃) ₂ снсн-s-снсн(сн ₃) ₂	73	4.86 and 4.74(each d,J=5Hz,2H) 2.3-1.5(m,2H), 0.96(d with shoulder, J=7Hz,12H), 0.20(s,18H)					
	⁷ ² ² ₆ H ₁₁ ^{CH-S-CHC} 6H ₁₁ <u>7</u> ²	77	5.0-4.7(m,2H), 2.1-0.8(m,22H) 0.19(s,18H)					
	777 (сн ₃) ₂ снсн-s-снс ₆ н ₁₁ ZZ	73	5.0-4.7(m,2H), 2.2-0.8(m,12H) 0.98(d,J=7Hz,6H), 0.19(s,18H)					
e	ZZZ CH ₃ CH ₂ CH ₂ CH-S-CHC ₆ H ₁₁ *Z = -OSiMe ₃	76	5.2-4.6(m,2H), 2.1-0.7(m,18H) 0.18(s,18H)					

TABLE I	

^a The H¹-nmr spectrum showed a mixture of diastereomers.

 $^{\rm b}$ The yields were determined by GC using an internal standard (SE-30 on Chromosorb-W).

Preparation_of Divinylic Sulfides							
	Divinylic Sulfide	yield(%) ^a	H ¹ -nmr(ô, TMS in CDCl ₃) m/	MS ^b e(rel.int.)			
<u>a</u> _	сн ₃ сн ₂ сн=сн-s-сн=снсн ₂ сн ₃	88 ^C	6.3-5.3(m,4H), 2.5-1.9(m,4H) 1.00(t like,J=7Hz,6H)	142(10) 143(M+1,100)			
b.	(CH ₃) ₂ C=CH-S-CH=C(CH ₃) ₂	93	5.78-5.55(m,2H), 1.70(s with shoulder,12H)	142(27) 143(M+1,100)			
<u>C</u>	CH-S-CH=	90	5.65(s,brd.,2H), 2.5-2.0(m,8H) 2.0-1.3(m,12H)	222(1) 223(M+1,100)			
ď	(CH ₃) ₂ C=CH-S-CH=	87	5.82-5.70(m,2H), 2.5-2.0(m,4H) 1.80(s with shoulder,6H) 2.0-1.3(m,6H)	182(1) 183(M+1,100)			
<u>e</u>	сн ₃ сн ₂ сн=сн-s-сн=	90 ^c	6.1-5.3(m,3H), 2.5-2.0(m,6H) 2.0-1.3(m,6H), 1.0(t,J=8Hz,3H)	182(3) 183(M+1,100)			

TABLE II

^a Isolated yield (calculated on α, α' -<u>bis</u>-trimethylsiloxysulfide). Each was homogeneous by gas chromatography.

(Received in USA 15 December 1980)

^b Chemical Ionization Mass Spectrometry.

^C Only the (E)-isomers were formed, (identified by GC and H¹NMR olefinic proton) cf. R. Muthukrishnan, and M. Schlosser, <u>Helv. Chim. Acta.</u>, 59, 13(1976).